SNiPer-HD: improved genotype calling accuracy by an expectation-maximization algorithm for high-density SNP arrays

نویسندگان

  • Jianping Hua
  • David W. Craig
  • Marcel Brun
  • Jennifer Webster
  • Victoria Zismann
  • Waibhav Tembe
  • Keta Joshipura
  • Matthew J. Huentelman
  • Edward R. Dougherty
  • Dietrich A. Stephan
چکیده

MOTIVATION The technology to genotype single nucleotide polymorphisms (SNPs) at extremely high densities provides for hypothesis-free genome-wide scans for common polymorphisms associated with complex disease. However, we find that some errors introduced by commonly employed genotyping algorithms may lead to inflation of false associations between markers and phenotype. RESULTS We have developed a novel SNP genotype calling program, SNiPer-High Density (SNiPer-HD), for highly accurate genotype calling across hundreds of thousands of SNPs. The program employs an expectation-maximization (EM) algorithm with parameters based on a training sample set. The algorithm choice allows for highly accurate genotyping for most SNPs. Also, we introduce a quality control metric for each assayed SNP, such that poor-behaving SNPs can be filtered using a metric correlating to genotype class separation in the calling algorithm. SNiPer-HD is superior to the standard dynamic modeling algorithm and is complementary and non-redundant to other algorithms, such as BRLMM. Implementing multiple algorithms together may provide highly accurate genotyping calls, without inflation of false positives due to systematically miss-called SNPs. A reliable and accurate set of SNP genotypes for increasingly dense panels will eliminate some false association signals and false negative signals, allowing for rapid identification of disease susceptibility loci for complex traits. AVAILABILITY SNiPer-HD is available at TGen's website: http://www.tgen.org/neurogenomics/data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SeqEM: an adaptive genotype-calling approach for next-generation sequencing studies

MOTIVATION Next-generation sequencing presents several statistical challenges, with one of the most fundamental being determining an individual's genotype from multiple aligned short read sequences at a position. Some simple approaches for genotype calling apply fixed filters, such as calling a heterozygote if more than a specified percentage of the reads have variant nucleotide calls. Other ge...

متن کامل

Integration of SNP genotyping confidence scores in IBD inference

MOTIVATION High-throughput single nucleotide polymorphism (SNP) arrays have become the standard platform for linkage and association analyses. The high SNP density of these platforms allows high-resolution identification of ancestral recombination events even for distant relatives many generations apart. However, such inference is sensitive to marker mistyping and current error detection method...

متن کامل

Haplotype block partitioning and tag SNP selection using genotype data and their applications to association studies.

Recent studies have revealed that linkage disequilibrium (LD) patterns vary across the human genome with some regions of high LD interspersed by regions of low LD. A small fraction of SNPs (tag SNPs) is sufficient to capture most of the haplotype structure of the human genome. In this paper, we develop a method to partition haplotypes into blocks and to identify tag SNPs based on genotype data ...

متن کامل

Bayesian Gaussian Mixture Models for High-Density Genotyping Arrays.

Affymetrix's SNP (single-nucleotide polymorphism) genotyping chips have increased the scope and decreased the cost of gene-mapping studies. Because each SNP is queried by multiple DNA probes, the chips present interesting challenges in genotype calling. Traditional clustering methods distinguish the three genotypes of an SNP fairly well given a large enough sample of unrelated individuals or a ...

متن کامل

Automated SNP Genotype Clustering Algorithm to Improve Data Completeness in High-Throughput SNP Genotyping Datasets from Custom Arrays

High-throughput SNP genotyping platforms use automated genotype calling algorithms to assign genotypes. While these algorithms work efficiently for individual platforms, they are not compatible with other platforms, and have individual biases that result in missed genotype calls. Here we present data on the use of a second complementary SNP genotype clustering algorithm. The algorithm was origi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformatics

دوره 23 1  شماره 

صفحات  -

تاریخ انتشار 2007